
 

 

1

UML Tutorial  
The Unified Modeling Language has quickly become the de- facto standard for building Object -Oriented software.  

The OMG specificat ion states:  "The Unified Modeling Language (UML)  is a graphical language for visualizing, specifying, 

const ruct ing, and document ing the art ifacts of a software- intensive system. The UML offers a standard way to write a system 's 

blueprints, including conceptual things such as business processes and system funct ions as well as concrete things such as 

programming language statements, database schemas, and reusable software components."  

The important  point  to note here is that  UML is a ' language' for specifying and not  a method or procedure. The UML is used to 

define a software system;  to detail the art ifacts in the system, to document  and const ruct  -  it  is the language that  the blueprint  is 

writ ten in. The UML m ay be used in a variety of ways to support  a software development  methodology' but  in itself it  does not  

specify that  methodology or process. 

UML defines the notat ion and semant ics for the following domains:  

-   The User I nteract ion or Use Case Model -  describes the boundary and interact ion between the system and users. Corresponds 

in some respects to a requirements model.  

-  The I nteract ion or Com m unicat ion Model -  describes how objects in the system will interact  with each other to get  work done.

-  The State or Dynam ic Model -  State charts describe the states or condit ions that  classes assume over t ime. Act ivity graphs 

describe the workflow's the system will implement . 

-  The Logical or Class Model -  describes the classes and objects that  will make up the system. 

-  The Physical Component  Model -  describes the software (and somet imes hardware components)  that  make up the system. 

-  The Physical Deployment  Model -  describes the physical architecture and the deployment  of components on that  hardware 

architecture.  
 

 

UML 2 .0    
UML 2 builds on the already highly successfull UML 1.x standard, which has become an indust ry standard for modeling, design and 

const ruct ion of software systems as well as more generalized business and scient ific processes. UML 2 defines 13 basic diagram 

types, divided into two general sets:  

1 . St ructural Modeling Diagram s 

 St ructure diagrams define the stat ic architecture of a model.   They are used to model the 'things' that  make up a model -  the 

classes, objects, interfaces and physical com ponents.  I n addit ion they are used to model the relat ionships and dependencies 

between elements. 

-   Package diagram s are used to divide the model into logical containers or 'packages' and describe the interact ions between 

them at  a high level 

-  Class or St ructural diagrams  define the basic building blocks of a model:  the types, classes and general materials that  are 

used to const ruct  a full model 

-  Object  diagrams show how instances of st ructural elements are related and used at  run- t ime.  

-  Composite St ructure diagrams provide a means of layering an element 's st ructure and focusing on inner detail,  const ruct ion 

and relat ionships 

-  Com ponent  diagram s are used to model higher level or more complex st ructures, usually built  up from  one or more classes, 

and providing a well defined interface 

-  Deployment  diagrams show the physical disposit ion of significant  artefacts within a real-world set t ing.  

 

2 . Behavioral Modeling Diagram s 

   Behavior diagrams capture the variet ies of interact ion and instantaneous state within a model as it  'executes' over t ime.   

-   Use Case diagram s  are used to model user/ system interact ions. They define behavior, requirements and const raints in the 

form  of scripts or scenarios 

-  Act ivity diagram s  have a wide number of uses, from  defining basic program flow, to capturing the decision points and act ions 

within any generalized process 

-  State Machine diagram s  are essent ial to understanding the instant  to instant   condit ion or " run state" of a model when it  

executes 

-  Com m unicat ion diagram s  show the network and sequence of messages or communicat ions between objects at  run- t ime during 

a collaborat ion instance 

-  Sequence diagrams  are closely related to Communicat ion diagrams and show the sequence of messages passed between 

objects using a vert ical t imeline 

-  Tim ing diagrams fuse Sequence and State diagrams to provide a view of an object 's state over t ime and messages which 

m odify that  state  

-  I nteract ion Overview diagrams fuse Act ivity and Sequence diagrams to provide allow interact ion fragments to be easily 

combined with decision points and flows    



 

 

2

UML 2  Act ivity Diagram   
Act ivity Diagram s 

I n UML an act ivity diagram is used to display the sequence of act ivit ies. Act ivity Diagrams show the workflow from  a start  point  to 

the finish point  detailing the many decision paths that  exist  in the progression of events contained in the act ivity. They may be used 

to detail situat ions where parallel processing may occur in the execut ion of some act ivit ies. Act ivity Diagrams are useful for 

Business Modelling where they are used for detailing the processes involved in business act ivit ies. 

 

An Example of an Act ivity Diagram is shown here 

 

The following sect ions describe the elements that  const itute an Act ivity diagram. 

Act ivit ies 

An act ivity is the specificat ion of a parameterized sequence of behaviour. An act ivity is shown as a round-cornered rectangle 

enclosing all the act ions, cont rol flows and other elem ents that  m ake up the act ivity.  

 

Act ions 
An act ion represents a single step within an act ivity. Act ions are denoted by round-cornered rectangles. 

 

Act ion Constraints 

Const raints can be at tached to an act ion. The following diagram shows an act ion with local pre-  and post -condit ions. 

 



 

 

3

Control Flow  
A cont rol flow shows the flow of cont rol from  one act ion to the next . I ts notat ion is a line with an arrowhead. 

 

I nit ia l Node  
An init ial or start  node is depicted by a large black spot , as depicted below. 

 

Final Node  
There are two types of final node:  act ivity and flow final nodes. The act ivity final node is depicted as a circle with a dot  inside. 

 

The flow final node is depicted as a circle with a cross inside.  

 

The difference between the two node types is that  the flow final node denotes the end of a single cont rol flow;  the act ivity final 

node denotes the end of all cont rol flows within the act ivity. 

Objects and Object  Flow s 

An object  flow is a path along which objects or data can pass. An object  is shown as a rectangle.  

 

An object  flow is shown as a connector with an arrowhead denot ing the direct ion the object  is being passed.  

 

 



 

 

4

An object  flow must  have an object  on at  least  one of its ends. A shorthand notat ion for the above diagram would be to use input  

and output  pins.  

 

A data store is shown as an object  with the «datastore» keyword. 

 

Decision and Merge Nodes 

Decision nodes and merge nodes have the same notat ion:  a diamond shape. They can both be named. The cont rol flows com ing 

away from  a decision node will have guard condit ions which will allow cont rol to flow if the guard condit ion is met . The following 

diagram shows use of a decision node and a merge node.  

 

Fork and Join Nodes 

Forks and joins have the same notat ion:  either a horizontal or vert ical bar ( the orientat ion is dependent  on whether the cont rol flow 

is running left  to r ight  or top to bot tom) . They indicate the start  and end of concurrent  threads of cont rol. The following diagram 

shows an example of their use. 

 

A join is different  from  a merge in that  the join synchronises two inflows and produces a single out flow. The out flow from  a join 

cannot  execute unt il all inflows have been received. A merge passes any cont rol flows st raight  through it . I f two or more inflows are 

received by a merge symbol, the act ion pointed to by its out flow is executed two or more t imes. 

Expansion Region  

An expansion region is a st ructured act ivity region that  executes mult iple t imes. I nput  and output  expansion nodes are drawn as a 

group of three boxes represent ing a mult iple select ion of items. The keyword iterat ive, parallel or st ream is shown in the top left  

corner of the region. 

 



 

 

5

Except ion Handlers 

Except ion Handlers can be modelled on act ivity diagrams as in the example below. 

 

I nterrupt ible Act ivity Region  

An interrupt ible act ivity region surrounds a group of act ions that  can be interrupted. I n the very simple example below, the Process 

Order act ion will execute unt il complet ion, when it  will pass cont rol to the Close Order act ion, unless a Cancel Request  interrupt  is 

received which will pass cont rol to the Cancel Order act ion. 

 

Part it ion  

An act ivity part it ion is shown as either horizontal or vert ical swim lanes. I n the following diagram, the part it ions are used to 

separate act ions within an act ivity into those performed by the account ing department  and those performed by the customer. 

 

  

 



 

 

6

 

UML 2  Class Diagram   
Class Diagram s 

The Class diagram shows the building blocks of any object -or ientated system. Class diagrams depict  the stat ic view of the model 

or part  of the model, describing what  at t r ibutes and behaviour it  has rather that  detailing the methods for achieving operat ions. 

Class diagrams are most  useful to illust rate relat ionships between classes and interfaces. Generalizat ions, aggregat ions, and 

associat ions are all valuable in reflect ing inheritance, composit ion or usage, and connect ions, respect ively. 

 

The diagram below illust rates aggregat ion relat ionships between classes. The lighter aggregat ion indicates that  the class Account  

uses AddressBook, but  does not  necessarily contain an instance of it .  The st rong, composite aggregat ions by the other connectors 

indicate ownership or containment  of the source classes by the target  classes, for example Contact  and ContactGroup values will 

be contained in AddressBook.   

 

Classes 

A class is an element  that  defines the at t r ibutes and behaviours that  an object  is able to generate. The behaviour is the described 

by the possible messages the class is able to understand along with operat ions that  are appropriate for each message. Classes 

m ay also contain definit ions of const raints tagged values and stereotypes.   

Class Notat ion 

Classes are represented by rectangles which show the name of the class and opt ionally the name of the operat ions and at t r ibutes. 

Compartments are used to divide the class name, at t r ibutes and operat ions. Addit ionally const raints, init ial values and param eters 

m ay be assigned to classes. 

 

I n the diagram below the class contains the class name in the topmost  compartment , the next  compartment  details the at t r ibutes, 

with the "center"  at t r ibute showing init ial values. The final compartment  shows the operat ions, the setWidth, setLength and 

setPosit ion operat ions showing their parameters. The notat ion that  precedes the at t r ibute or operat ion name indicates the visibility 

of the element , if the +  symbol is used the at t r ibute or operat ion has a public level of visibilit y, if a -  symbol is used the at t r ibute 

or operat ion is pr ivate. I n addit ion the #  symbol allows an operat ion or at t r ibute to be defined as protected and the ~  symbol 

indicates package visibilit y.  

 



 

 

7

I nterfaces 

An interface is a specificat ion of behaviour that  implementers agree to meet . I t  is a cont ract . By realizing an interface, classes are 

guaranteed to support  a required behaviour, which allows the system to t reat  non- related elements in the same way – i.e. through 
the com m on interface. 

 

I nterfaces may be drawn in a sim ilar style to a class, with operat ions specified, as shown below. They may also be drawn as a 

circle with no explicit  operat ions detailed. When drawn as a circle, realizat ion links to the circle form  of notat ion are drawn without  
target  arrows.  

 

Tables 

A table is a stereotyped class. I t  is drawn with a small table icon in the upper r ight  corner. Table at t r ibutes are stereotyped 

«column». Most  tables will have a primary key, being one or more fields that  form  a unique combinat ion used to access the table, 

plus a primary key operat ion which is stereotyped «PK». Some tables will have one or more foreign keys, being one or more fields 
that  together map onto a primary key in a related table, plus a foreign key operat ion which is stereotyped «FK». 

 

Associat ions 

An associat ion implies two model elements have a relat ionship -  usually implemented as an instance variable in one class. This 

connector may include named roles at  each end, cardinality, direct ion and const raints. Associat ion is the general relat ionship type 

between elements. For more than two elements, a diagonal representat ion toolbox element  can be used as well. When code is 
generated for class diagrams, associat ions become instance variables in the target  class. 

 



 

 

8

Generalizat ions 

A generalizat ion is used to indicate inheritance. Drawn from  the specific classifier to a general classifier, the generalize implicat ion 

is that  the source inherits the target 's characterist ics. The following diagram shows a parent  class generalizing a child class. 

I mplicit ly, an instant iated object  of the Circle class will have at t r ibutes x_posit ion, y_posit ion and radius and a method display( ) . 
Note that  the class Shape is abst ract , shown by the name being italicized. 

 

The following diagram shows an equivalent  view of the same informat ion.  

 

Aggregat ions 

Aggregat ions are used to depict  elements which are made up of smaller components. Aggregat ion relat ionships are shown by a 

white diamond-shaped arrowhead point ing towards the target  or parent  class. 

 

A st ronger form  of aggregat ion -  a composite aggregat ion -  is shown by a black diamond-shaped arrowhead and is used where 

components can be included in a maximum of one composit ion at  a t ime. I f the parent  of a composite aggregat ion is deleted, 

usually all of its parts are deleted with it ;  however a part  can be individually removed from  a composit ion without  having to delete 

the ent ire composit ion. Composit ions are t ransit ive, asymmetric relat ionships and can be recursive.  

 

The following diagram illust rates the difference between weak and st rong aggregat ions. An address book is made up of a 

mult iplicity of contacts and contact  groups. A contact  group is a vir tual grouping of contacts;  a contact  may be included in more 

than one contact  group. I f you delete an address book, all the contacts and contact  groups will be deleted too;  if you delete a 
contact  group, no contacts will be deleted.  

 

Associat ion Classes 

An associat ion class is a const ruct  that  allows an associat ion connect ion to have operat ions and at t r ibutes. The following example 

shows that  there is more to allocat ing an employee to a project  than making a simple associat ion link between the two classes:  

the role that  the employee takes up on the project  is a complex ent ity in its own r ight  and contains detail that  does not  belong in 

the employee or project  class. For example, an employee may be working on several projects at  the same t ime and have different  
job t it les and security levels on each. 



 

 

9

 

Dependencies 

A dependency is used to model a wide range of dependent  relat ionships between model elements. I t  would normally be used early 

in the design process where it  is known that  there is some kind of link between two elements but  it  is too early to know exact ly 

what  the relat ionship is. Later in the design process, dependencies will be stereotyped (stereotypes available include «instant iate», 
«t race», «import» and others)  or replaced with a more specific type of connector. 

Traces 

The t race relat ionship is a specializat ion of a dependency, linking model elements or sets of elements that  represent  the same idea 

across models. Traces are often used to t rack requirements and model changes. As changes can occur in both direct ions, the order 

of this dependency is usually ignored. The relat ionship's propert ies can specify the t race mapping, but  the t race is usually bi-
direct ional, informal and rarely computable. 

Realizat ions 

The source object  implements or realizes the dest inat ion. Realize is used to express t raceability and completeness in the model -  a 

business process or requirement  is realized by one or more use cases which are in turn realized by some classes, which in turn are 

realized by a component , etc. Mapping requirements, classes, etc. across the design of your system, up through the levels of 

modelling abst ract ion, ensures the big picture of your system remembers and reflects all the lit t le pictures and details that  
const rain and define it . A realizat ion is shown as a dashed line with a solid arrowhead and the «realize» stereotype. 

 

Nest ings 

A nest ing is connector that  shows that  the source element  is nested within the target  element . The following diagram shows the 
definit ion of an inner class although in EA it  is more usual to show them by their posit ion in the Project  View hierarchy. 

 



 

 

10

  

 

UML 2  Com m unicat ion Diagram   
Com m unicat ion Diagram s 

A communicat ion diagram, formerly called a collaborat ion diagram, is an interact ion diagram that  shows sim ilar informat ion to 

sequence diagrams but  its pr imary focus in on object  relat ionships. 

 

On communicat ion diagrams, objects are shown with associat ion connectors between them. Messages are added to the 

associat ions and show as short  arrows point ing in the direct ion of the message flow. The sequence of messages is shown through 

a numbering scheme.  

 

The following two diagrams show a communicat ion diagram and the sequence diagram that  shows the same informat ion. 

Although it  is possible to derive the sequencing of messages in the communicat ion diagram from  the numbering scheme, it  isn’t  

immediately visible. What  the communicat ion diagram does show quite clearly though is the full set  of messages passed between 

adjacent  objects.  

 

 

 



 

 

11

 

UML 2  Com ponent  Diagram   
Com ponent  Diagram s 

Component  Diagrams illust rate the pieces of software, embedded cont rollers, etc. that  will make up a system. A Component  

diagram has a higher level of abst ract ion than a Class diagram  -  usually a component  is implemented by one or more classes (or 

objects)  at  runt ime. They are building blocks, such that  eventually a component  can encompass a large port ion of a system. 

 

The diagram below demonst rates some components and their inter- relat ionships. Assembly connectors ' link' the provided 

interfaces supplied by Product  and Customer to the required interfaces specified by Order. A dependency relat ionship maps a 

customer's associated account  details to the required interface, 'Payment ', indicated by Order.  

 

Components are sim ilar in pract ice to package diagrams as the define boundaries and are used to group elements into logical 

st ructures. The difference between Package Diagrams and Component  diagrams is that  Component  Diagrams offer a more 

semant ically r ich grouping mechanism . With Component  Diagrams all of the model elements are private whereas Package 

diagrams only display public items.  

Represent ing Com ponents 

Components are represented as a rectangular classifier with the keyword «component», opt ionally the component  may be 

displayed as a rectangle with a component  icon in the r ight -hand upper corner.  

 

Required I nterfaces 

The Assembly connector br idges a component ’s required interface (Component1)  with the provided interface of another 

component  (Component2) ;  this allows one component  to provide the services that  another component  requires. I nterfaces are 
collect ions of one or more methods which may or may not  contain at t r ibutes. 

 



 

 

12

Com ponents w ith Ports  

Using Ports with Component  Diagrams allows for a service or behavior to be specified to its environment  as well as a service or 

behavior that  a Com ponent  requires. Ports m ay specify inputs, outputs as well as operat ing bi-direct ionally. The following 

diagram details a component  with a port  for Online services along with two provided interfaces Order Ent ry and Tracking as well 
as a required interface Payment . 

 

 



 

 

13

 

UML 2  Com posite Structure Diagram   
Com posite Diagram s 

A composite st ructure diagram is a diagram that  shows the internal st ructure of a classifier, including its interact ion points to 

other parts of the system. I t  shows the configurat ion and relat ionship of parts that  together perform  the behaviour of the 

containing classifier. 

 

Class elements have been described in great  detail in the sect ion on class diagrams. This sect ion describes the way that  classes 

can be displayed as composite elements exposing interfaces and containing ports and parts.  

 

Part  

A part  is an element  that  represents a set  of one or more instances which are owned by a containing classifier instance. So for 

example, if a diagram instance owned a set  of graphical elements, then the graphical elements could be represented as parts, if it  

were useful to do so to model some kind of relat ionship between them. Note that  a part  can be removed from  its parent  before 

the parent  is deleted, so that  the part  isn't  deleted at  the same t ime. 

 

A part  is shown as an unadorned rectangle contained within the body of a class or component  element .   

 

Port  

A port  is a typed element  that  represents an externally visible part  of a containing classifier instance. Ports define the interact ion 

between a classifier and its environment . A port  can appear on the boundary of a contained part , a class or a composite 

st ructure. A port  may specify the services a classifier provides as well as the services that  it  requires of its environment . 

 

A port  is shown as a named rectangle on the boundary edge of its owning classifier. 

 

I nterfaces 

An interface is sim ilar to a class but  with a number of rest r ict ions. All interface operat ions are public and abst ract , and do not  

provide any default  implementat ion. All interface at t r ibutes must  be constants. However, while a class may only inherit  from  a 

single super-class, it  m ay im plem ent  m ult iple interfaces. 

 



 

 

14

An interface, when standing alone in a diagram, is either shown as a class element  rectangle with the «interface» keyword and 
with its name italicised to denote it  is abst ract , or it  is shown as a circle. 

 

Note that  the circle notat ion does not  show the interface operat ions. When interfaces are shown as being owned by classes, they 

are referred to as exposed interfaces. An exposed interface can be defined as either provided or required. A provided interface is 

an affirmat ion that  the containing classifier supplies the operat ions defined by the named interface element  and is defined by 

drawing a realisat ion link between the class and the interface. A required interface is a statement  that  the classifier is able to 

communicate with some other classifier which provides operat ions defined by the named interface element  and is defined by 

drawing a dependency link between the class and the interface. 

 

A provided interface is shown as a "ball on a st ick"  at tached to the edge of a classifier element . A required interface is shown as a 

"cup on a st ick"  at tached to the edge of a classifier element . 

 

Delegate  

A delegate connector is used for defining the internal workings of a component 's external ports and interfaces. A delegate 

connector is shown as an arrow with a «delegate» stereotype. I t  connects an external cont ract  of a com ponent  as shown by its 
ports to the internal realisat ion of the behaviour of the component 's part .  

 

Collaborat ion  

A collaborat ion defines a set  of co-operat ing roles used collect ively to illust rate a specific funct ionality. A collaborat ion should only 

show the roles and at t r ibutes required to accomplish its defined task or funct ion. I solat ing the primary roles is an exercise in 

simplifying the st ructure and clar ifying the behaviour, and also provides for re-use. A collaborat ion often implements a pat tern. 

 
A collaborat ion element  is shown as an ellipse. 

 



 

 

15

Role Binding  

A role binding connector is drawn from  a collaborat ion to the classifier that  fulfils the role. I t  is shown as a dashed line with 
arrowhead and the stereotype «role binding». 

 

Represents 

A represents connector may be drawn from  a collaborat ion to a classifier to show that  a collaborat ion is used in the classifier. I t  is 
shown as a dashed line with arrowhead and the stereotype «represents». 

 

Occurrence  

An occurrence connector may be drawn from  a collaborat ion to a classifier to show that  a collaborat ion represents(sic)  the 
classifier. I t  is shown as a dashed line with arrowhead and the stereotype «occurrence». 

 

 



 

 

16

 

UML 2  Deploym ent  Diagram   
Deploym ent  Diagram s 

A Deployment  Diagram models the run- t ime architecture of a system. I t  shows the configurat ion of the hardware elements 

(nodes)  and shows how software elements and art ifacts are mapped onto those nodes.  

Node 

A Node is either a hardware or software element . I t  is shown as a 3-dimensional box shape, as below  

 

Node I nstance  

A node instance can be shown on a diagram. An instance can be dist inguished from  a node by the fact  that  its name is underlined 

and has a colon before its base node type. An instance may or may not  have a name before the colon. The following diagram 
shows a nam ed instance of a com puter. 

 

Node Stereotypes 

A number of standard stereotypes are provided for nodes, namely «cdrom», «cd- rom», «computer», «disk array», «pc», «pc 

client», «pc server», «secure», «server», «storage», «unix server», «user pc». These will display an appropriate icon in the top 

r ight  corner of the node symbol 

 

Art ifact  

An Art ifact  is a product  of the software development  process. That  m ay include process m odels (e.g. Use Case m odels, Design 
models etc) , source files, executables, design documents, test  reports, prototypes, user manuals and so on. 

An art ifact  is denoted by a rectangle showing the art ifact  name, the «art ifact» stereotype and a document  icon, as follows. 

 



 

 

17

Associat ion  

I n the context  of a deployment  diagram, an associat ion represents a communicat ion path between nodes. The following diagram  

shows a deployment  diagram for a network, showing network protocols as stereotypes and also showing mult iplicit ies at  the 
associat ion ends. 

 

Node as Container  

A node can contain other elem ents, such as com ponents or art ifacts. The following diagram  shows a deploym ent  diagram  for part  
of an embedded system and showing an executable art ifact  as being contained by the motherboard node. 

 

 



 

 

18

 

UML 2  I nteract ion Overview  Diagram   
I nteract ion Overview  Diagram s 

An I nteract ion Overview Diagram is a form  of act ivity diagram in which the nodes represent  interact ion diagram s. I nteract ion 

diagrams can include sequence, communicat ion, interact ion overview and t im ing diagrams. Most  of the notat ion for interact ion 

overview diagrams is the same as for act ivity diagrams, for example init ial, final, decision, merge, fork and join nodes are all the 

same. However, interact ion overview diagrams int roduce two new elements, interact ion occurrences and interact ion elements.  

I nteract ion Occurrence 

I nteract ion Occurrences are references to exist ing interact ion diagrams. An interact ion occurrence is shown as a reference frame, 

i.e. a frame with “ ref”  in the top- left  corner. The name of the diagram being referenced is shown in the center of the frame.  

 

I nteract ion Elem ent 

I nteract ion Elements are sim ilar to interact ion occurrences in that  they display a representat ion of exist ing interact ion diagrams 

within a rectangular fram e. They differ in that  they display the contents of the references diagram inline.  

 

Put t ing it  a ll together 

All the same cont rols from  act ivity diagrams ( fork, join, merge etc)  can be used on I nteract ion Overview diagrams to put  the 

cont rol logic around the lower level diagrams. The following example depicts a sample sale process with sub-processes abst racted 

within interact ion occurrences.  

 



 

 

19

 

UML 2  Object  Diagram s  
Object  Diagram s 

An object  diagram may be considered a special case of a class diagram. Object  diagrams use a subset  of the elements of a class 

diagram in order to emphasize the relat ionship between instances of classes at  some point  in t ime. They are useful in 

understanding class diagrams. They don’t  show anything architecturally different  to class diagrams, but  reflect  mult iplicity and 

roles.  

Class and Object  Elem ents 

The following diagram shows the differences in appearance between a class element  and an object  element . Note that  the class 

element  consists of three parts, being divided into name, at t r ibute and operat ion compartments;  by default , object  elements 

don’t  have compartments. The display of names is also different :  object  names are underlined and may show the name of the 

classifier from  which the object  is instant iated.  

 

Run Tim e State  

A classifier element  can have any number of at t r ibutes and operat ions. These aren’t  shown in an object  instance. I t  is possible, 

however, to define an object ’s run t ime state, showing the set  values of at t r ibutes in the part icular instance.  

 

Exam ple Class and Object  Diagram s 

The following diagram shows an object  diagram with its defining class diagram inset , and it  illust rates the way in which an object  

diagram may be used to test  the mult iplicit ies of assignments in class diagrams. The car class has a 1- to-many mult iplicity to the 

wheel class, but  if a 1- to-4 mult iplicity had been chosen instead, that  wouldn’t  have allowed for the three-wheeled car shown in 

the object  diagram.  

 



 

 

20

 

UML 2  Package Diagram   
Package Diagram s 

Package Diagrams are used to reflect  the organizat ion of packages and their elements. When used to represent  class elements  

package diagrams are used to provide a visualizat ion of the namespaces. The most  common uses for Package diagrams is to use  

them  to organize Use-Case Diagrams and Class diagram s, although the use of Package Diagrams is not  lim ited to these UML  

elements. 

 

The following is an example of a package diagram.  

 

Elements contained in a Package share the same namespace, this sharing of namespace requires the elements contained in a  

specific nam espace to have unique nam es. 

Packages can be built  to represent  either physical or logical relat ionships. When choosing to include classes to specific packages,  

it  is useful to assign the classes with the same inheritance hierarchy to packages, classes that  are related via composit ion and  

classes that  collaborate with also have a st rong argument  for being included into the same package..  

 

Packages are represented in UML 2.0 as folders and contain the elements that  share a namespace;  all elements within a package  

must  have a unique ident ifier. The Package must  show the Package name and can opt ionally show the elements within the Package
 in ext ra com partm ents. 

Package Merge  

When a «merge» connector is used on a package, the source of the merge imports the target ’s nested and imported contents. I f an

element  exists within the source and in the target  the sources element ’s definit ions will be expanded to will be expanded to include

the element  definit ions contained in the target . All of the elements added or updated by a merge are noted by a generalizat ion  
relat ionship from  the source to the target .  

Package I m port   

The «import» connector indicates that  the elements within the target  package, which in this example is a single class, the target   

package, will be imported into the source package. The Source Package’s namespace will gain access to the Target ’s class/ s;  the  
Target ’s namespace is not  affected. 

Nest ing Connectors 

The nest ing connector between the target  package and source packages reflect  what  the package contents reveal.  

 



 

 

21

UML 2  Sequence Diagram   
Sequence Diagram s 

A sequence diagram is a form  of interact ion diagram which shows objects as lifelines running down the page and with their 

interact ions over t ime represented as messages drawn as arrows from  the source lifeline to the target  lifeline. Sequence diagrams 

are good at  showing which objects communicate with which other objects and what  messages t r igger those communicat ions. 

Sequence diagrams are not  intended for showing complex procedural logic..  

Lifelines 

A lifeline represents an individual part icipant  in a sequence diagram. A lifeline will usually have a rectangle containing its object  

name. I f its name is self then that  indicates that  the lifeline represents the classifier which owns the sequence diagram..  

 

Somet imes a sequence diagram will have a lifeline with an actor element  symbol at  its head. This will usually be the case if the 

sequence diagram is owned by a use case. Boundary, cont rol and ent ity elements from  robustness diagrams can also own lifelines.

 

Messages 

Messages are displayed as arrows. Messages can be complete, lost  or found;  synchronous or asynchronous;  call or signal. I n the 

following diagram, the first  message is a synchronous message (denoted by the solid arrowhead)  complete with an implicit  return 

message;  the second message is asynchronous (denoted by line arrowhead)  and the third is the asynchronous return message 

(denoted by the dashed line) .  

 

Execut ion Occurrence 

A thin rectangle running down the lifeline denotes the execut ion occurrence or act ivat ion of a focus of cont rol. I n the previous 

diagram, there are three execut ion occurrences. The first  is the source object  sending two messages and receiving two replies;  the 

second is the target  object  receiving a synchronous message and returning a reply;  and the third is the target  object  receiving an 

asynchronous message and returning a reply.  



 

 

22

Self Message 

A self message can represent  a recursive call of an operat ion, or one method calling another method belonging to the same object . 

I t  is shown as creat ing a nested focus of cont rol in the lifeline’s execut ion occurrence.  

 

Lost  and Found Messages 

Lost  messages are those that  are either sent  but  do not  arr ive at  the intended recipient , or which go to a recipient  not  shown on 

the current  diagram. Found messages are those that  arr ive from  an unknown sender, or from  a sender not  shown on the current  

diagram. They are denoted going to or com ing from  an endpoint  element .  

 

Lifeline Start  and End 

A lifeline may be created or dest royed during the t imescale represented by a sequence diagram. I n the lat ter case, the lifeline is 

term inated by a stop symbol, represented as a cross. I n the former case, the symbol at  the head of the lifeline is shown at  a lower 

level down the page than the symbol of the object  that  caused the creat ion. The following diagram shows an object  being created 

and dest royed.  

 



 

 

23

Durat ion and Tim e Constraints 

By default , a message is shown as a horizontal line. Since the lifeline represents the passage of t ime down the screen, when 

m odelling a real- t ime system, or even a t ime-bound business process, it  can be important  to consider the length of t ime it  takes to 

perform  act ions. By set t ing a durat ion const raint  for a message, the message will be shown as a sloping line.  

 

Com bined Fragm ents 

I t  was stated earlier that  Sequence diagrams are not  intended for showing complex procedural logic. While this is the case, there 

are a number of mechanisms that  do allow for adding a degree of procedural logic to diagrams and which come under the heading 

of combined fragments. A combined fragment  is one or more processing sequence enclosed in a frame and executed under specific 

named circumstances. The fragments available are:  

• Alternat ive fragment  (denoted “alt ” )  models if…then…else const ructs.  

• Opt ion fragment  (denoted “opt ” )  m odels switch const ructs.  

• Break fragment  models an alternat ive sequence of events that  is processed instead of the whole of the rest  of the diagram. 

• Parallel fragment  (denoted “par” )  models concurrent  processing.  

• Weak sequencing fragment  (denoted “seq” )  encloses a number of sequences for which all the messages must  be processed 

in a preceding segment  before the following segment  can start , but  which does not  impose any sequencing within a 

segment  on messages that  don’t  share a lifeline.  

• Str ict  sequencing fragment  (denoted “st r ict ” )  encloses a series of messages which must  be processed in the given order.  

• Negat ive fragment  (denoted “neg” )  encloses an invalid series of messages.  

• Crit ical fragment  encloses a cr it ical sect ion.  

• I gnore fragm ent  declares a message or message to be of no interest  if it  appears in the current  context .  

• Consider fragment  is in effect  the opposite of the ignore fragment :  any message not  included in the consider fragment  

should be ignored.  

• Assert ion fragment  (denoted “assert ” )  designates that  any sequence not  shown as an operand of the assert ion is invalid.  

• Loop fragment  encloses a series of messages which are repeated.  

The following diagram shows a loop fragment .  

 



 

 

24

There is also an interact ion occurrence, which is sim ilar to a combined fragment . An interact ion occurrence is a reference to another 

diagram which has the word "ref"  in the top left  corner of the frame, and has the name of the referenced diagram shown in the 

m iddle of the frame. 

Gate 

A gate is a connect ion point  for connect ing a message inside a fragment  with a message outside a fragment . EA shows a gate as a 

sm all square on a fragm ent  fram e.  

 

Part  Decom posit ion 

An object  can have more than one lifeline com ing from  it . This allows for inter-  and int ra-object  messages to be displayed on the 

sam e diagram .  

 

State I nvariant  /  Cont inuat ions 

A state invariant  is a const raint  placed on a lifeline that  must  be t rue at  run- t ime. I t  is shown as a rectangle with sem i-circular 

ends.  

 

A Cont inuat ion has the same notat ion as a state invariant  but  is used in combined fragments and can st retch across more than one 

lifeline. 

 



 

 

25

 

UML 2  State Machine Diagram   
State Machine Diagram s 

A State Machine Diagram models the behaviour of a single object , specifying the sequence of events that  an object  goes through 

during its lifet ime in response to events. 

 

As an example, the following State Machine Diagram shows the states that  a door goes through during its lifet ime.  

 

The door can be in one of three states:  Opened, Closed or Locked. I t  can respond to the events Open, Close, Lock and Unlock. 

Not ice that  not  all events are valid in all states:  for example, if a door is Opened, you cannot  lock it  unt il you close it . Also not ice 

that  a state t ransit ion can have a guard condit ion at tached:  if the door is Opened, it  can only respond to the Close event  if the 

condit ion doorWay-> isEmpty is fulfilled. The syntax and convent ions used in State Machine Diagrams will be discussed in full in the 
following sect ions.  

States 

A State is denoted by a round-cornered rectangle with the name of the state writ ten inside it . 

 

I nit ia l and Final States 

The I nit ial State is denoted by a filled black circle and may be labelled with a name. The Final State is denoted by a circle with a dot
inside and may also be labelled with a name. 

 

Transit ions 

Transit ions from  one state to the next  are denoted by lines with arrowheads. A t ransit ion may have a t r igger, a guard and an 

effect , as below.  

 



 

 

26

"Trigger"  is the cause of the t ransit ion, which could be a signal, an event , a change in some condit ion, or the passage of t ime. 

"Guard" is a condit ion which must  be t rue in order for the t r igger to cause the t ransit ion. "Effect "  is an act ion which will be invoked 

direct ly on the object  that  owns the state machine as a result  of the t ransit ion. 

State Act ions 

I n the t ransit ion example above, an Effect  was associated with the t ransit ion. I f the target  state had many t ransit ions arr iving at  it ,  

and each t ransit ion had the same effect  associated with it ,  it  would be bet ter to associate the effect  with the target  state rather 

than the t ransit ions. This can be done by defining an ent ry act ion for the state. The diagram below shows a state with an ent ry 
act ion and an exit  act ion. 

 

I t  is also possible to define act ions that  occur on events, or act ions that  always occur. I t  is possible to define any number of act ions 

of each type. 

 

Self- Transit ions 

A state can have a t ransit ion that  returns to itself, as in the following diagram. This is most  useful when an effect  is associated with 
the t ransit ion. 

 

Com pound States 

A state machine diagram may include sub-machine diagrams, as in the example below. 

 

 



 

 

27

The alternat ive way to show the same informat ion is as follows. 

 

The notat ion in the above version indicates that  the details of the Check PI N sub-machine are shown in a separate diagram. 

Entry Point  

Somet imes you won’t  want  to enter a sub-machine at  the normal I nit ial State. For example, in the following sub-machine it  would 

be normal to begin in the I nit ializing state, but  if for some reason it  wasn’t  necessary to perform  the init ializat ion, it  would be 

possible to begin in the Ready state by t ransit ioning to the named Ent ry Point . 

 

The following diagram shows the state machine one level up:  

 



 

 

28

Exit  Point  

I n a sim ilar manner to Ent ry Points, it  is possible to have named alternat ive Exit  Points. The following diagram gives an example 
where the state executed after the main processing state depends on which route is used to t ransit ion out  of the state. 

 

Choice Pseudo- State  

A choice pseudo-state is shown as a diamond with one t ransit ion arr iving and two or more t ransit ions leaving. The following 

diagram shows that  whichever state is arr ived at  after the choice pseudo-state is dependent  on the message format  selected during 
execut ion of the previous state. 

 

Junct ion Pseudo- State  

Junct ion pseudo-states are used to chain together mult iple t ransit ions. A single junct ion can have one or more incom ing and one or 

more outgoing t ransit ions and a guard can be applied to each t ransit ion. Junct ions are semant ic- free;  a junct ion which splits an 

incom ing t ransit ion into mult iple outgoing t ransit ions realizes a stat ic condit ional branch as opposed to a choice pseudo-state which 
realizes a dynam ic condit ional branch. 

 



 

 

29

Term inate Pseudo- State  

Entering a term inate pseudo-state indicates that  the lifeline of the state machine has ended. A term inate pseudo-state is notated as 
a cross. 

 

History States 

A History State is used to remember the previous state of a state machine when it  was interrupted. The following diagram 
illust rates the use of history states. The example is a state machine belonging to a washing machine. 

 

I n this state machine, when a washing machine is running it  will progress from  Washing through Rinsing to Spinning. I f there is a 

power cut , the washing machine will stop running and will go to the Power Off state. Then when the power is restored, the Running 

state is entered at  the History State symbol meaning that  it  should resume where it  last  left -off.  

Concurrent  Regions 

A state may be divided into regions containing sub-states that  exist  and execute concurrent ly. The example below shows that  

within the state "Applying Brakes", the front  and rear brakes will be operat ing simultaneously and independent ly. Not ice the use of 

fork and join pseudo-states rather than choice and merge pseudo-states. These sym bols are used to synchronize the concurrent  

threads.  

 

 



 

 

30

 

UML 2  Tim ing Diagram   
Tim ing Diagram s 

UML t im ing diagrams are used to display the change in state or value of one or more elements over t ime. I t  can also show the 

interact ion between t imed events and the t ime and durat ion const raints that  govern them.  

State Lifeline 

A state lifeline shows the change of state of an item  over t ime. The X-axis displays elapsed t ime in whatever units are chosen while 

the Y-axis is labelled with a given list  of states. A state lifeline is shown below.  

 

Value Lifeline  

A value lifeline shows the change of value of an item  over t ime. The X-axis displays elapsed t ime in whatever units are chosen, the 

same as for the state lifeline. The value is shown between the pair of horizontal lines which crosses over at  each change in value. A 
value lifeline is shown below. 

 

Putt ing it  a ll together  

State and Value Lifelines can be stacked one on top of another in any combinat ion. They must  have the same X-axis. Messages can 

be passed from  one lifeline to another. Each state or value t ransit ion can have a defined event , a t ime const raint  which indicates 

when an event  must  occur, and a durat ion const raint  which indicates how long a state or value must  be in effect  for. Once these 

have all been applied, a t im ing diagram may look like the following. 

 



 

 

31

 

UML 2  Use Case Diagram   
Use Case Model 

The Use Case Model captures the requirements of a system. Use cases are a means of communicat ing with users and other 

stakeholders about  what  the system is intended to do.  

Actors 

A Use Case Diagram shows the interact ion between the system and ent it ies external to the system. These external ent it ies are 

referred to as Actors. Actors represent  roles which may include human users, external hardware or other systems. An actors is 

usually drawn as a named st ick figure, or alternat ively as a class rectangle with the «actor» keyword.  

  

Actors can generalize other actors as detailed in the following diagram:  

 

Use Cases 

A use case is a single unit  of meaningful work. I t  provides a high- level view of behavior observable to someone or something 

outside the system. The notat ion for a use case is an ellipse. 

 

 

The notat ion for using a use case is a connect ing line with an opt ional arrowhead showing the direct ion of cont rol. The following 

diagram indicates that  the actor Customer uses the Withdraw use case. 

 

The uses connector can opt ionally have mult iplicity values at  each end, as in the following diagram which shows that  a custom er 

may only have one withdrawal session at  a t ime, but  a bank may have any number of customers making withdrawals concurrent ly.

 



 

 

32

Use Case Definit ion  

A Use Case Typically I ncludes:   

• Name and Descript ion  

• Requirements  

• Const raints  

• Scenarios  

• Scenario Diagram s  

• Addit ional informat ion.  

Nam e and Descript ion  

A use case is normally named as a verb-phrase and given a brief informal textual descript ion.  

Requirem ents 

The requirements define the formal funct ional requirements that  a use case must  supply to the end user. They correspond to the 

funct ional specificat ions found in st ructured methodologies. A requirement  is a cont ract  or prom ise that  the Use Case will perform  

an act ion or provide some value to the system. 

Constraints 

A const raint  is a condit ion or rest r ict ion that  a Use Case operates under and includes pre, post  and invariant  condit ions. A 

precondit ion specifies the condit ions that  need to be met  before the Use Case can proceed. A post  condit ion is used to document  

the change in condit ions that  must  be t rue after the execut ion of the Use Case. An invariant  condit ion specifies the condit ions that  
are t rue throughout  the execut ion of the Use Case 

Scenarios 

A Scenario is a formal descript ion of the flow of events that  occur during the execut ion of a Use Case instance. I t  defines the 

specific sequence of events between the system and the external Actors. I t  is normally described in text  and corresponds to the 
textual representat ion of the Sequence Diagram. 

I ncluding Use Cases 

Uses Cases may contain the funct ionality of another Use Case as part  of their normal processing. I n general it  is assum ed that  any 

included use case will be called every t ime the basic path is run. An example of this is to have the execut ion of the Use Case < Card 

I dent ificat ion>  to be run as part  of a Use Case < Withdraw> . 

 

Use Cases may be included by one or more Use Case, helping to reduce the level of duplicat ion of funct ionality by factoring out  

common behavior into Use Cases that  are re-used many t imes.  

Extending Use Cases 

One Use Case may be used to extend the behavior of another;  this is typically used in except ional circumstances. For example, if 

before modifying a part icular type of customer order, a user must  get  approval from  some higher authority, then the < Get  

Approval>  Use Case may opt ionally extend the regular < Modify Order>  Use Case.  

 

 

 

 



 

 

33

Extension Points 

The point  at  which an extending use case is added can be defined by means of an extension point .  

 

System  Boundary  

I t  is usual to display use cases as being inside the system and actors as being outside the system. 

 

 

  


